In [ ]:
%matplotlib nbagg
import matplotlib.pyplot as plt
import numpy as np

Get some data to play with


In [ ]:
from sklearn.datasets import load_digits
digits = load_digits()

In [ ]:
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(digits.data,
                                                    digits.target)

Really Simple API

0) Import your model class


In [ ]:
from sklearn.svm import LinearSVC

1) Instantiate an object and set the parameters


In [ ]:
svm = LinearSVC(C=0.1)

2) Fit the model


In [ ]:
svm.fit(X_train, y_train)

3) Apply / evaluate


In [ ]:
print(svm.predict(X_train))
print(y_train)

In [ ]:
svm.score(X_train, y_train)

In [ ]:
svm.score(X_test, y_test)

And again


In [ ]:
from sklearn.ensemble import RandomForestClassifier

In [ ]:
rf = RandomForestClassifier(n_estimators=50)

In [ ]:
rf.fit(X_train, y_train)

In [ ]:
rf.score(X_test, y_test)

In [ ]:
%load https://raw.githubusercontent.com/scikit-learn/scikit-learn/master/examples/classification/plot_classifier_comparison.py

Exercises

Load the iris dataset from the sklearn.datasets module using the load_iris function.

Split it into training and test set using train_test_split. Then train an evaluate a classifier of your choice.


In [ ]:
# %load solutions/train_iris.py